

Integrated Power Conversion and Power Management

next generation technology for emerging business opportunities

new technologies new applications new markets

Tuesday, October 7th, 2014 – Session 4: Magnetics

Galvanic Isolating Power Supplies – From PCB to Chip & from Analogue to Digital

Matthias Radecker, Yujia Yang, Torsten Reich, René Buhl, Hans-Joachim Quenzer, Shan-Shan Gu-Stoppel

- Galvanic Isolation versus Miniaturization
- Size Reduction at PCB
- Integration on Silicon versus Passive Process
- Piezo Transformer: Discrete and on Silicon
- GaN on Silicon
- Interleaved Driving for Matching Modules
- Digital Driving for Flexible Programming
- Sequence Based Control & Transient Control
- Conclusion

- Galvanic Isolation versus Miniaturization
- Size Reduction at PCB
- Integration on Silicon versus Passive Process
- Piezo Transformer: Discrete and on Silicon
- GaN on Silicon
- Interleaved Driving for Matching Modules
- Digital Driving for Flexible Programming
- Sequence Based Control & Transient Control
- Conclusion

Galvanic Isolation versus Miniaturization

Isolation by discrete components

- Magnetic transformer: Winding Isolation and Pin Distance on PCB large (8 mm creepage distance)
- Capacitor: Large Coupling Capacitance, maximum power limited, 8 mm creepage distance
- Piezoelectric transformer: Size must allow for 8 mm creepage distance, pin distance on PCB large
- High power density with galvanic isolation is only possible with integrated technology

Galvanic Isolation & Miniaturization

Isolation by passive technology: 114 W/cm³

- Integrated magnetic transformer: Isolation by material, no air creepage distance, <u>V = 10,5 cm³</u>
- + multilevel input stage -> reduce blocking voltage
- + low Q -> unregulated
- + high frequency
- = Miniaturization

Source: VICOR BCM® Bus Converter BCM380y475x1K2A30

- Galvanic Isolation versus Miniaturization
- Size Reduction at PCB
- Integration on Silicon versus Passive Process
- Piezo Transformer: Discrete and on Silicon
- GaN on Silicon
- Interleaved Driving for Matching Modules
- Digital Driving for Flexible Programming
- Sequence Based Control & Transient Control
- Conclusion

Size Reduction at PCB

LED Off-Line 12 Watts: 0,7 W/cm³ - Transformer Size:

- PCB: 78x34x15 mm³=39,78 cm³
 (opt.) 24,3 cm³ (low cost)164 %
- PCB: 60x27x12 mm³=19,44 cm³
 (optimized) 80 %
- PCB: 60x7x10,5 mm³=17,01 cm³
 (optimized) 70 %

 Flyback
 H=8,5 mm

 2,04 cm³
 100 %

 Piezo Radial H=5,2 mm

 1,47 cm³
 72 %

 Piezo Quad. H=3,75mm

 0,85 cm³
 42 %

Size Reduction at PCB depends mainly on height of transformer

Size Reduction at PCB

Off-Line Power Supply 4 Watts: 0,68 W/cm³ - Frequency:

- PT Radial 200 kHz
- PT Radial 280 kHz

 $D=14 \text{ mm}; H=4 \text{ mm} (V=0,62 \text{ cm}^3)$

74%

PCB: 40x25x8 mm³ Multi-leaded Power package = $8,0 \text{ cm}^3$ 100% $(e.g. SDIP-38L = 5,9 cm^3)$

RAC04-C (RECOM) $= 10,7 \text{ cm}^3$ 134 %

Power package for small height converter components suitable

- Galvanic Isolation versus Miniaturization
- Size Reduction at PCB
- Integration on Silicon versus Passive Process
- Piezo Transformer: Discrete and on Silicon
- GaN on Silicon
- Interleaved Driving for Matching Modules
- Digital Driving for Flexible Programming
- Sequence Based Control & Transient Control
- Conclusion

Integration on Silicon versus Passive Process

"emPIC" (embedded passives integrated circuit)

Source: Waffenschmidt, E.; Ferreira, J.A.; "Embedded passives integrated circuits for power converters "; PESC 02. 2002 IEEE 33rd Annual, Volume: 1 , 23-27 June 2002; Pages:12 - 17 vol.1.

Ballast-on-a-chip: Di-electric Isolation

Silicon Technology and Passive Technology with L in range of µH not compatible

- Galvanic Isolation versus Miniaturization
- Size Reduction at PCB
- Integration on Silicon versus Passive Process
- Piezo Transformer : Discrete and on Silicon
- GaN on Silicon
- Interleaved Driving for Matching Modules
- Digital Driving for Flexible Programming
- Sequence Based Control & Transient Control
- Conclusion

Topology Off-Line Piezo Power Supply

IF + Boost Converter (PFC) + Serial Inductor HB + Piezo Transformer + Syncronous Rectifier FB + OF

Topology Off-Line Piezo Power Supply

Input Filter + Boost Converter (PFC)

Topology Off-Line Piezo Power Supply

Serial Inductor HB + Piezo Transformer + Synchronous Rectifier FB + Output Filter

Experimental Results 3 Watts

Input Filter + Boost Converter (PFC) V_{IN} = 90V_{rms}

Experimental Results 3 Watts

SIHB + PT + Rectifier + Output Filter: V_{BUS} = 450V

Experimental Results 3 Watts

Parameter	Value
Switching Frequency	261.86 kHz
Average output voltage	4.947 V
Average output power	3.138 W
Half-Bridge Lf rms current	55 mA
Ambient Temperature	28 °C
PT maximum temperature	62 °C
Lf maximum temperature	46 °C
S1, S2 maximum temperature	38 °C

Goal: All Components Integrated on Silicon

Simple and Reliable Packaging !

Integrated Synchronous Rectifier

Discrete Device (PZT Power Density = 20 ... 40 W/cm³)

Single Integrated Device

 How to integrate a PT on Silicon?

Integrated Array ON SIII (Goal: PZT Power Density = 20000 ... 40000 W/cm³)

- Thickness PZT: Tp = 4 μm
- Thickness Silicon: Tsi = 400 μm
- Input Voltage = 100 V
- Output Voltage = 11.3 V
- Strain Output Electrode-Membrane:
 - maximum planar: 0.14 μ m
 - maximum vertical: 2.5 μ m
 - average planar: 0.08 μ m
 - average vertical: 1.6 μm
- average stress: 2.89 * 10⁸ Pa

Dumbbell-shaped Hollow-Out U Device

Double Ring Device

- Thickness PZT: Tp = 2 μm
- Thickness Silicon: Tsi = 20 μm
- Input Voltage = 100 V
- Output Voltage = 22.3 V
- Strain Output Electrode-Membrane:
 - maximum planar: 1.1 μ m
 - maximum vertical: 1.2 μ m
 - average planar: 0.77 μm
 - average vertical: 1.0 μm
- average stress: 6.23 * 10⁸ Pa

- Thickness PZT: Tp = 2 μm
- Thickness Silicon: Tsi = 20 μm
- Input Voltage = 100 V
- Output Voltage = 16.8 V
 - Strain Output Electrode-Membrane:
 - maximum planar: 0.5 μm
 - maximum vertical: 1.9 μ m
 - average planar: 0.3 μm
 - average vertical: 1.1 μm
- average stress: 5.06 * 10⁸ Pa
- Drum-shaped Device

	Discrete PT	Massive U Design	Hollow-Out U Design	Double –R. Design	Drum Design
Displacement vertical (µm)	бе-4	0,87e-2	1,6	1	1,1
Average Stress (Pa)	1,08e8	2.29e7	2,89e8	6,23e8	5,06e8
Input Voltage (V)	100	100	100	100	100
Output Voltage (V)	29	1,45	11,3	22,3	16,8

Decision: Hollow-Out U Design

 Top Layer (Au) with Bottom Layer (Pt) has large conduction resistance and capacitive shorts

Interdigital Structure for only Top Layer (Au) has minimum conduction resistance and small capacitances

Sputtering of PZT

Choice of Sputtering Process: High Power Density achieved by unique crystal structure

PZT-Schicht auf Si durch PZT on Si through hollow cathode

sputtering 13,3 µm thickness,

(100 µm thickness possible)

Magnetron Sputtering of PZT

- 8" Siliziumwafer
- hot sputtering process T =550°C
- metallic targets
- Sputtering rate 100 nm/min

Integrated Piezo Transformer Application

- Galvanic Isolation versus Miniaturization
- Size Reduction at PCB
- Integration on Silicon versus Passive Process
- Piezo Transformer : Discrete and on Silicon
- GaN on Silicon
- Interleaved Driving for Matching Modules
- Digital Driving for Flexible Programming
- Sequence Based Control & Transient Control
- Conclusion

GaN Integrated on Silicon

GaN: E_c = 3,3 MV/cm

E, = 0,3 MV/cm

- GaN has high blocking voltage
- High temperature capability
- Small On-Resistance
- High swiching frequencies
- GaN on large and cheap silicon subtrates
- Arrays feasible (Half-Bridge)

But: For Voltages over 100 V no benefit compered to Silicon (e.g. Coolmos)

- Galvanic Isolation versus Miniaturization
- Size Reduction at PCB
- Integration on Silicon versus Passive Process
- Piezo Transformer : Discrete and on Silicon
- GaN on Silicon
- Interleaved Driving for Matching Modules
- Digital Driving for Flexible Programming
- Sequence Based Control & Transient Control
- Conclusion

Interleaved Driving for Matching Modules

- Modules operate on demand
- Master: Voltage Control
- Slaves: Current Control

- Phase Shifting: $\varphi = \frac{2\pi}{n}$
- Reduces Output Filter
- Reduces Input filter

Granular Structure for Matching Modules

- Galvanic Isolation versus Miniaturization
- Size Reduction at PCB
- Integration on Silicon versus Passive Process
- Piezo Transformer : Discrete and on Silicon
- GaN on Silicon
- Interleaved Driving for Matching Modules
- Digital Driving for Flexible Programming
- Sequence Based Control & Transient Control
- Conclusion

Digital Driving for Flexible Programming

- Chip by Chip
- Nano-DSP for Digital Control
- Low-Side Driver
- High-Side
 Driver up to 1
 MHz
- Programmable Pins
- Interleaving by GPIO

Source: DP2 of Infineon Technologies AG

- Galvanic Isolation versus Miniaturization
- Size Reduction at PCB
- Integration on Silicon versus Passive Process
- Piezo Transformer : Discrete and on Silicon
- GaN on Silicon
- Interleaved Driving for Matching Modules
- Digital Driving for Flexible Programming
- Sequence Based Control & Transient Control
- Conclusion

Sequence Based Control and Transient Control

- Sequence Based Control (SBC) means extended sliding mode control considering linear and saturated areas
- SBC can improve transient behaviour significantly and avoid instablility of PWM converters
- Modular topology with interleaved cells controllable by SBC
- SBC requires Digital Control (DSP)
- Transient Control (TC) will control switching slopes at power switches for improving EMI suppression and reducing filter expense
- Transient Control (e.g. dV/dt of Drain-Source Voltage) will improve interleaving ripple reduction (avoid spikes)
- TC requires Digital Control (DSP)

- Galvanic Isolation versus Miniaturization
- Size Reduction at PCB
- Integration on Silicon versus Passive Process
- Piezo Transformer : Discrete and on Silicon
- GaN on Silicon
- Interleaved Driving for Matching Modules
- Digital Driving for Flexible Programming
- Sequence Based Control & Transient Control
- Conclusion

Conclusion

- Power density of galvanic isolating off-line supplies for several Watts is not satisfying today
- Magnetic transformer technology is not compatible yet with silicon integration, only at > 100 MHz
- Piezoelectric transformers have larger power density than magnetics and can be integrated on silicon
- High efficient power switches as GaN transistors can be integrated on silicon to reduce switching losses, only with granular structure for V_{BR} < 100 V
- Interleaved driving reduces filter expense
- Integrated arrays of piezo transformers improve matching
- Digital driving provides functional flexibility and enable appropriate control methods (SBC, TC)

Thank you !

matthias .radecker@izm.fraunhofer.de

